If it's not what You are looking for type in the equation solver your own equation and let us solve it.
169x^2-9=0
a = 169; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·169·(-9)
Δ = 6084
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6084}=78$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-78}{2*169}=\frac{-78}{338} =-3/13 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+78}{2*169}=\frac{78}{338} =3/13 $
| 9(t−95)=36 | | 4+8g=36 | | -8v=5(v-2)=-34 | | -20=-60+x | | 3p-19=p+19 | | 18=3+3p | | 35-2x=(1/2)9x-47 | | 3x+9/4-18=8x+8 | | (7n+12)=(10n-9) | | 4x-16+2x=16 | | 0.5(x+5)=36 | | -10=p/2=-18 | | m/3= | | 0.5(x-5)=36 | | 11=m/2 | | 2x+2x=4x+10 | | b-6=2(b÷2-3) | | (X+3)2+(2x)2=36 | | 5k=8k+4k | | 2x/11+3=0 | | c^2=1369 | | 1-9a=196 | | c^2=1,369 | | 19+1.50h=14+ | | 2p−5=13 | | 3.9+t=45 | | 5x+3x+18=19 | | 13x+7=1219 | | 2.3/x=5/4 | | (7x-9)=45 | | r+593=651 | | 8x+7=-23 |